BIPOLAR-TYPE LITHIUM-ION SECONDARY BATTERY AND MANUFACTURE THEREOF

Patent Number:	JP11204136		
Publication date:	1999-07-30		
Inventor(s):	KAWAMOTO KOJI		
Applicant(s):	TOYOTA MOTOR CORP		
Requested Patent:	☐ JP11204136		
Application Number: JP19980002545 19980108			
Priority Number(s):			
IPC Classification:	H01M10/40; H01M10/38		
EC Classification:			
Equivalents:	·		

Abstract

PROBLEM TO BE SOLVED: To provide a bipolar-type lithium-ion secondary battery having such a structure that a voltage check and a capacity check can be performed per each battery unit, and also to provide its manufacturing method.

SOLUTION: A positive electrode 12 and a negative electrode 14 are formed on both sides of a separator 10, in which a gel electrolyte is impregnated, to thereby constitute a battery unit. The plural battery units are stacked together with such collecting foils 16 that its periphery is covered an insulating material 22, and each battery units are connected in series. This layer body is inserted between a collecting foil on the positive electrode side 18 and a collecting foil on the negative electrode side 20, to thereby constitute a bipolar type lithium-ion secondary battery.

Data supplied from the esp@cenet database - I2

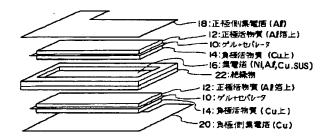
(11)特許出顧公開番号

特開平11-204136

(43)公開日 平成11年(1999)7月30日

(51) Int.Cl. ⁶		識別記号	FΙ		
H01M	10/40		H01M	10/40	В
	10/38			10/38	

審査請求未請求請求項の数2 OL (全4頁)


(21)出顧番号	特顧平10-2545	(71)出顧人	000003207 トヨ夕自動車株式会社
(22)出顧日	平成10年(1998)1月8日	(72)発明者	 愛知県豊田市トヨタ町1番地 川本 浩二 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内
		(74)代理人	弁理士 吉田 研二 (外2名)

(54)【発明の名称】 パイポーラ型リチウムイオン2次電池及びその製造方法

(57)【要約】

【課題】 各電池単位ごとに電圧チェック、容量チェッ クが行える構造のバイポーラ型リチウムイオン2次電池 及びその製造方法を提供する。

【解決手段】 ゲル電解質が含浸されたセパレータ10 の両側に正極12及び負極14が形成され、電池単位を 構成している。この電池単位を、絶縁物22で周囲が覆 われた集電箔16を介して複数個積層し、各電池単位を 直列に接続する。このような積層体を正極側集電箔18 と負極側集電箔20との間に挟み込み、バイポーラ型リ チウムイオン2次電池を構成する。

【特許請求の範囲】

÷

【請求項1】 ゲル電解質が含浸されたセパレータの両 面にそれぞれ正極と負極とが形成された電池単位が複数 個積層された構造を有することを特徴とするバイポーラ 型リチウムイオン2次電池。

【請求項2】 請求項1記載のバイポーラ型リチウムイ オン2次電池の製造方法であって、

通気性を有するセパレータを正極材と負極材とで挟む工 程と、前記挟まれたセパレータに電解質が溶解した電解 液と樹脂との混合液を含浸する工程と、このセパレータ を加熱し、その後冷却することにより、前記含浸された 混合液をゲル化する工程と、により前記セルを形成し、 これを積層することを特徴とするバイポーラ型リチウム イオン2次電池の製造方法。

【発明の詳細な説明】

[0001]

「水明の屋子?」

【発明の属する技術分野】本発明は、バイポーラ型リチ ウムイオン2次電池の構造の改良及びそのための製造方 法の改良に関する。

[0002]

【従来の技術】従来、バイポーラ型リチウムイオン2次 電池は、集電箔上の片面に負極を設け、他の片面に正極 を設けたものを電解質・セパレータを介して積層するこ とにより製造していた。

【0003】実開平4-54148号公報には、このような構造の電池が開示されている。図2には、本従来例の電池の断面図が示される。図2において、銅板100 a,100bの間に、複数個の基板102が、電解質1 04を介して積層されている。この基板102は、ステ ンレス薄板等よりなる導電性の基板本体106を隔壁と して、その一側面側に正極活物質108を、他側面側に 負極活物質110をそれぞれ付着している。

[0004]

【発明が解決しようとする課題】しかし、上記従来例に おいては、各電池の単位、すなわち電解質104を挟ん だ正極活物質108、負極活物質110を独立して形成 することができない。このため、電池全体に電圧を印可 した場合の合計電圧しか測定できず、個々の電池単位ご とに実際に加わる電圧が測定できない。従って、製造時 に不良な電池単位が存在してもチェックできず、使用中 その部分に電圧が集中し、破損の恐れが大きくなるとい う問題があった。

【0005】本発明は、上記従来の課題に鑑みなされた ものであり、その目的は、各電池単位ごとに電圧チェッ ク、容量チェックが行える構造のバイポーラ型リチウム イオン2次電池及びその製造方法を提供することにあ る。

[0006]

【課題を解決するための手段】上記目的を達成するため に、本発明は、バイポーラ型リチウムイオン2次電池で あって、ゲル電解質が含浸されたセパレータの両面にそ れぞれ正極と負極とが形成された電池単位が複数個積層 された構造を有することを特徴とする。

【0007】また、上記バイポーラ型リチウムイオン2 次電池の製造方法であって、通気性を有するセパレータ を正極材と負極材とで挟む工程と、この挟まれたセパレ ータに電解質が溶解した電解液と樹脂との混合液を含浸 する工程と、このセパレータを加熱し、その後冷却する ことにより、含浸された混合液をゲル化する工程と、に より電池単位を形成し、これを積層することを特徴とす る。

[0008]

【発明の実施の形態】以下、本発明の実施の形態(以下 実施形態という)を、図面に従って説明する。

【0009】図1には、本発明に係るバイボーラ型リチ ウムイオン2次電池の構成図が示される。図1におい て、ゲル電解質が含浸されたセパレータ10の両面にそ れぞれ正極12及び負極14が形成された電池単位が、 集電箔16を介して複数個積層されている。このような 積層体が、正極側及び負極側の集電箔18、20によっ て挟まれ、バイボーラ型リチウムイオン2次電池が構成 されている。

【0010】上述の正極12は、例えばアルミニウム箔 上に、LiMn₂O₄のような活物質をその片面のみに塗 布し乾燥させたものである。また負極14は、例えば銅 上に黒鉛のような活物質をその片面のみに塗布し乾燥さ せたものである。上記電池単位は、正極12の活物質側 と負極14の活物質側とを対向させ、セパレータ10を 挟んで形成されている。

【0011】また、集電箔16としては、例えばニッケ ル(Ni)、アルミニウム(A1)、銅(Cu)、ステ ンレス(SUS)等が使用される。この集電箔16は、 その周囲は例えばポリエチレン(PE)、ポリプロピレ ン(PP)、ポリテトラフルオラエチレン(PTFE) のような絶縁物22によって覆われている。これによ り、厚さの極めて薄い電池単位を、集電箔16を介して 積層していく場合の、各電極間の短絡を防止することが

復宿していて物合い、存電運動の近船を防止することが できる。 【0012】また、正極側集電箔18としてはアルミニ ウム等が使用され、負極側集電箔20としては現象が使

ウム等が使用され、負極側集電箔20としては銅等が使 用されている。正極側集電箔18と負極側集電箔20と の間に、複数の電池単位が積層されているので、電池の 直列接続となり、各電池単位の電位の合計分だけの起電 力を有するバイポーラ型リチウムイオン2次電池を構成 することができる。

【0013】なお、図1に示された例では、各電極及び 集電箔が矩形状をなしているが、これを円筒形状とする ことも好適である。

【0014】次に、上記バイポーラ型リチウムイオン2 次電池の製造方法について説明する。 【0015】正極12及び負極14については、前述したように、アルミニウム箔上(正極)あるいは銅上(負極)に各活物質を塗布し乾燥させることにより製造する。

【0016】また、この正極12及び負極14の各活物 質側を対向配置し、ゲル電解質が含浸されたセパレータ 10を挟み込んで電池単位とするが、これは以下の工程 により製造する。すなわち、正極12及び負極14の各 活物質を対向させ、通気性を有するセパレータとして不 織布をその間に挟み込む。これを、LiPF6電解質を 含むEC:DEC=1:1の電解液に、PVDF-HF P樹脂を15%分散させた混合液の中に浸漬する。この PVDF-HFPの代わりに、アクリルやPAN等の樹 脂を使用することもできる。また、電解質としては、L iPF6のほかにLiBF4等も使用することができる。 また、電解質を溶解する溶液としては、PC等も使用す ることができる。上記電解質が溶解した電解液と樹脂と の混合液は、まだゲル状になっていないので、この工程 により、不織布中に浸透していく。

【0017】以上のように、上記混合液中に上述した電 池単位を浸漬した後、120℃の温度に加熱する。加熱 後、混合液中から電池単位を取り出し、室温に冷却し、 不織布中に含浸された混合液をゲル化する。この工程に より、ゲル電解質が含浸されたセパレータ10の両面に 正極12及び負極14が形成された電池単位を得ること ができる。

【0018】以上のように構成した電池単位の短絡や容 量及び電圧のチェックをした後、この電池単位を、P E、PP、PTFE等の絶縁体で周囲を囲んだステンレ ス箔等の集電箔16を介して積層し、バイポーラ電池を 得ることができる。なお、積層物を固定するため、P E、PPが溶解する温度でホットプレスすることも好適 である。あるいは、全体をモールディングすることも好 適である。

【0019】上述したように電解質が溶解した電解液の 中に、PVDF-HFP等の樹脂を混合するのは、電解 液のみでは、不織布中に電解液を保持するのが難しく、 また充放電によりLiデンドライトが発生しやすいため である。これに対し、樹脂を混合しゲル化させると、粒 界の発生を防止でき、抵抗の増加を抑制できる。

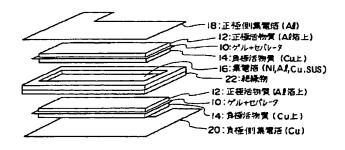
【0020】本発明においては、バイボーラ型リチウム イオン2次電池を製造する際に、各電池単位すなわち正 極12、負極14及びセパレータ10からなる電池単位 を形成し、この電池単位を積層していくという手順とな る。従って、製造時にこの電池単位毎にその電圧チェッ ク及び容量チェックを行うことができる。このため、製 造時に不良な電池単位が存在した場合には、これを取り 除くことができる。この結果、使用中にその不良な電池 単位部分に電圧が集中し、破損することを防止すること ができる。

【0021】以上のようにして構成した本発明に係るバ イポーラ型リチウムイオン2次電池の充放電試験を実施 したところ、電池単位を2層積層した場合に、0.5m A/cm²の充放電電流で、3.2時間充電し、2.6 時間放電した場合に(6-8.5V間)、100サイク ル後も初期の85%の容量を得ることができた。これに より耐久性のよいバイポーラ型リチウムイオン2次電池 が得られていることが確認された。

[0022]

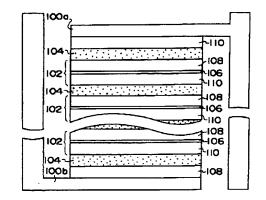
【発明の効果】以上説明したように、本発明によれば、 ゲル電解質が含浸されたセパレータの両面に正極と負極 とが形成された電池単位を製造し、これを積層するの で、製造時に電池単位毎に電圧チェック及び容量チェッ クを行うことができる。この結果、バイポーラ型リチウ ムイオン2次電池の製造時に不良な電池単位を排除する ことができ、不良な電池単位に電圧が集中して破損する ことを防止することができる。

【図面の簡単な説明】


【図1】 本発明に係るバイポーラ型リチウムイオン2 次電池の構成図である。

【図2】 従来におけるバイポーラ型リチウムイオン2 次電池の構成の断面図である。

【符号の説明】


 セパレータ、12 正極、14 負極、16 集
 電箔、18 正極側集電箔、20 負極側集電箔、22
 絶縁物、100a,100b 銅板、102基板、1
 04 電解質、106 基板本体、108 正極活物 質、110 負極活物質。

【図1】

.

,

.

•

ب